Giải và biện luận phương trình bậc 1

Giải và biện luận phương trình bậc nhất $ax+b=0$ là một dạng toán quan trọng giúp học sinh rèn luyện khả năng lập luận, tư duy logic.

Xem thêm Toán 10 – Biện luận hệ phương trình, hệ bất phương trình bằng đồ thị

1. Giải và biện luận phương trình ax+b=0

Để giải và biện luận phương trình $ax+b=0$, ta xét hai trường hợp:

  • Trường hợp 1. Nếu $ a\ne 0$ thì phương trình đã cho là phương trình bậc nhất nên có nghiệm duy nhất $$ x=-\frac{b}{a}.$$
  • Trường hợp 2. Nếu $ a = 0$ thì phương trình đã cho trở thành $ 0x+b=0$, lúc này:
    • Nếu $ b=0$ thì phương trình đã cho có tập nghiệm là $ \mathbb{R};$
    • Nếu $ b\ne 0$ thì phương trình đã cho vô nghiệm.

Bảng tóm tắt cách giải và biện luận phương trình $ax+b=0$

Chú ý khi giải và biện luận phương trình bậc nhất:

  • Biến đổi để đưa phương trình đã cho về đúng dạng $ax+b=0$ trước khi xét các trường hợp.
  • Nếu phương trình đã cho có điều kiện thì cần kiểm tra nghiệm tìm được có thỏa mãn điều kiện hay không rồi mới kết luận.

2. Ví dụ giải và biện luận phương trình ax+b=0

Ví dụ 1. Giải và biện luận phương trình $ mx+2-m=0$.

Chúng ta xét hai trường hợp:

  • Trường hợp 1. Nếu $ m=0$, phương trình đã cho trở thành $$ 0x+2=0 $$ Rõ ràng phương trình này vô nghiệm, nên phương trình đã cho vô nghiệm.
  • Trường hợp 2. Nếu $ m\ne 0$, phương trình đã cho là phương trình bậc nhất, nên nó có nghiệm duy nhất $ \displaystyle x=\frac{m-2}{m}.$

Vậy, $ m=0$ thì phương trình đã cho vô nghiệm; $ m\ne 0$ thì phương trình đã cho có nghiệm duy nhất.

Ví dụ 2. Giải và biện luận phương trình $ [m-2]x+2-m=0$.

Chúng ta xét hai trường hợp:

  • Trường hợp 1. $ m-2=0$ hay $ m=2$ thì phương trình đã cho trở thành $$ 0x+0=0 $$ Rõ ràng phương trình này có tập nghiệm là $ \mathbb{R}$ nên phương trình đã cho cũng có tập nghiệm là $ \mathbb{R}$.
  • Trường hợp 2. $ m\ne 2$, phương trình đã cho là phương trình bậc nhất, nên nó có nghiệm duy nhất $ \displaystyle x=\frac{m-2}{m-2}=-1.$

Vậy, $ m=2$ thì phương trình đã cho có tập nghiệm là $ \mathbb{R}$; $ m\ne 2$ thì phương trình đã cho có nghiệm duy nhất $ x=-1$.

Ví dụ 3. Giải và biện luận phương trình $ mx+[2-3m]x+5=0$.

Hướng dẫn. Trước tiên chúng ta biến đổi phương trình đã cho về dạng $ ax+b=0$. Có, phương trình đã cho tương đương với $$ [2-2m]x+5=0 $$ Chúng ta xét hai trường hợp:

  • Trường hợp 1. $ 2-2m=0$ hay $ m=1$ thì phương trình đã cho trở thành $$ 0x+5=0 $$ Phương trình này vô nghiệm, nên phương trình đã cho vô nghiệm.
  • Trường hợp 2. $ m\ne 1$, phương trình đã cho là phương trình bậc nhất, nên nó có nghiệm duy nhất $ \displaystyle x=\frac{-5}{2-2m}.$

Vậy, $ m=1$ thì phương trình đã cho vô nghiệm; $ m\ne 1$ thì phương trình đã cho có nghiệm duy nhất $ x=\frac{-5}{2-2m}$.

Ví dụ 4. Giải và biện luận phương trình $ \frac{5x-m}{x-1}=0$.

Hướng dẫn. Trước tiên chúng ta tìm điều kiện xác định của phương trình, sau đó biến đổi đưa phương trình về dạng quen thuộc $ ax+b=0.$

  • Điều kiện xác định: $ x\ne 1$. Với điều kiện đó, phương trình đã cho tương đương với $$ 5x-m=0 $$
  • Phương trình này có nghiệm $ x=\frac{m}{5}$. Tuy nhiên đây chưa phải nghiệm của phương trình đã cho vì cần có điều kiện $ x\ne 1$. Do đó chúng ta xét hai trường hợp:
    • Trường hợp 1. Nếu $ \frac{m}{5}=1$ hay $ m=5$ thì phương trình đã cho vô nghiệm.
    • Trường hợp 2. Nếu $ m\ne 5$ thì phương trình đã cho có nghiệm duy nhất $ x=\frac{m}{5}.$

Tóm lại, $ m=5$ thì phương trình đã cho vô nghiệm; $ m\ne 5$ thì phương trình đã cho có nghiệm duy nhất $ x=\frac{m}{5}.$

Ví dụ 5. Giải và biện luận phương trình $$ \frac{mx+2m}{x-3}=0 $$

Ví dụ 6. Giải và biện luận phương trình $$ \frac{[m+1]x+2m}{x^2-4}=0 $$

Ví dụ 7. Giải và biện luận phương trình $$ \frac{x+2-m}{\sqrt{x-4}}=0 $$

Ví dụ 8. Tìm $m$ để phương trình $ [x-1][x-3m]=0$ có hai nghiệm phân biệt.

Ví dụ 9. Tìm $m$ để phương trình $ \sqrt{x-3}[x+5-m]=0$ có hai nghiệm phân biệt.

Ví dụ 10. Tìm $m$ để phương trình $ [3-m]x+9-m^3=0$ có tập nghiệm là $ \mathbb{R}$.

Ví dụ 11. Tìm $m$ để phương trình $ [3-m]x+9-m^3=0$ vô nghiệm.

Ví dụ 12. Tìm $m$ để phương trình $ \frac{[3-m]x+3}{x-5}=0$ vô nghiệm.

3. Bài tập giải và biện luận phương trình bậc nhất

Bài 1. Giải và biện luận các phương trình sau theo tham số $m$:

  1. $mx = 3$
  2. $[ m -2] x = m -2$
  3. $[2 m -1] x = 5m +3$
  4. $[ m ^2-1] x =2 m +2$
  5. $m [ x -2]=x +1$
  6. $[ m -1] x =2 x + m -3$
  7. $[ m +1][ x -2]=3 m -1$
  8. $[ m -1][ x +1]= m ^{2}-1$
  9. $[ m -3] x = m [ m -1]-6$
  10. $[2 m -3] x = m [2 m -5]+3$

I. Tóm tắt lý thuyết

Cách giải và biện luận phương trình dạng ax+b=0 được tóm tắt trong bảng sau

ax + b = 0  [1]

Hệ số

Kết luận

a ≠ 0

[1] có nghiệm duy nhất x = -b/a

a = 0

b ≠ 0

[1] vô nghiệm

b = 0

[1] nghiệm đúng với mọi x

Khi a ≠ 0 phương trình ax + b = 0 được gọi là phương trình bậc nhất một ẩn

II. Ví dụ minh họa

Bài 1: Cho phương trình [m2 - 7m + 6]x + m2 - 1 = 0

a. Giải phương trình khi m = 0

b. Biện luận theo m số nghiệm của phương trình

Hướng dẫn:

a. Với m = 0 phương trình trở thành 6x - 1 = 0 ⇔ x = 1/6

Phương trình có nghiệm duy nhất x = 1/6

b. Ta có [m2 - 7m + 6]x + m2 - 1 = 0 ⇔ [m-1][m-6]x + [m-1][m+1] = 0

Nếu m = 1 phương trình trở thành 0 = 0. Khi đó phương trình có vô số nghiệm.

Nếu m = 6 thì phương trình trở thành 35 = 0 [Vô lí]. Khi đó phương trình vô nghiệm.

Bài 2: Tìm tất cả các giá trị thực của tham số m để phương trình [2m - 4]x = m - 2 có nghiệm duy nhất.

Hướng dẫn:

Phương trình đã cho có nghiệm duy nhất khi 2m - 4 ≠ 0 ⇔ m ≠ 2

B. Giải và biện luận phương trình bậc hai theo tham số m

I. Tóm tắt lý thuyết và phương pháp giải

Giải và biện luận phương trình bậc hai ax2 + bx + c = 0

Bước 1. Biến đổi phương trình về đúng dạng ax2 + bx + c = 0

Bước 2. Nếu hệ số a chứa tham số, ta xét 2 trường hợp:

- Trường hợp 1: a = 0, ta giải và biện luận ax + b = 0.

- Trường hợp 2: a ≠ 0. Ta lập Δ = b2 - 4ac. Khi đó:

+ Nếu Δ > 0 thì phương trình có 2 nghiệm phân biệt 

+ Nếu Δ = 0 thì phương trình có 1 nghiệm [kép]: x = -b/2a

+ Nếu Δ < 0 thì phương trình vô nghiệm.

Bước 3. Kết luận.

Lưu ý:

- Phương trình ax2 + bx + c = 0 có nghiệm 

- Phương trình ax2 + bx + c = 0 có nghiệm duy nhất 

II. Ví dụ minh họa

Bài 1: Phương trình [m–1]x2 + 3x – 1 = 0. Phương trình có nghiệm khi:

Hướng dẫn:

Với m = 1, phương trình trở thành 3x - 1 = 0 ⇔ x = 1/3

Do đó m = 1 thỏa mãn.

Với m ≠ 1, ta có Δ = 9 + 4[m-1] = 4m + 5

Phương trình có nghiệm khi Δ ≥ 0

Hợp hai trường hợp ta được m ≥ -5/4 là giá trị cần tìm

Bài 2: Phương trình [x2 - 3x + m][x - 1] = 0 có 3 nghiệm phân biệt khi:

Hướng dẫn:

Phương trình [1] có 3 nghiệm phân biệt

⇔ Phương trình [2] có hai nghiệm phân biệt khác 1

Tham khảo các bài học khác

Video liên quan

Chủ Đề