De thi học sinh giỏi toán 7 huyện tĩnh gia năm 2024

Mathx.vn biên soạn gửi tới các em hướng dẫn giải chi tiết đề thi tuyển chọn học sinh giỏi cấp tỉnh của sở GDĐT Thanh Hóa môn toán khối THCS năm học 2023 2024. Các em học sinh tải để về làm trước sau đó so sánh kết quả và cách giải chi tiết trong bài viết này. Chúc các em học tập tốt!

.png?fbclid=IwAR10nKALalzJolDcLXVYkzAnIQYyQzbFDNrWGuDpeLvcv8lkaeLO-CuH_2c]

ĐỀ THI CHỌN HỌC SINH GIỎI CẤP TỈNH

SỞ GDĐT THANH HÓA

[ĐÁP ÁN + LỜI GIẢI CHI TIẾT]

Môn thi: Toán - THCS

Năm học: 2023 - 2024

Thời gian làm bài: 150 phút

Câu I [4 điểm].

1. Cho biểu thức:

\[{\mathrm{A}}=\left[2-{\dfrac{2{\sqrt{x y}}+1}{1+{\sqrt{x y}}}}+{\dfrac{1}{1-{\sqrt{x y}}}}+{\dfrac{2{\sqrt{x}}}{1-x y}}\right]:\left[{\dfrac{{\sqrt{x y}}-{\sqrt{x}}}{{\sqrt{x y}}+1}}-{\dfrac{{\sqrt{x y}}+{\sqrt{x}}}{{\sqrt{x y}}-1}}\right]\]

[với \[x > 0, y > 0, xy \neq 1\]]. Rút gọn biểu thức A

2. Cho a là số thực thỏa mãn: \[a^{3} - a - 1 = 0\]. Tính giá trị của biểu thức

\[B=a\sqrt{2a^{6}-4a^{4}+4a^{2}+3a}-\sqrt{2a^{2}+3a+2}\]

Giải

1.

Ta có:

\[{\mathrm{A}}=\left[2-{\dfrac{2{\sqrt{x y}}+1}{1+{\sqrt{x y}}}}+{\dfrac{1}{1-{\sqrt{x y}}}}+{\dfrac{2{\sqrt{x}}}{1-x y}}\right]:\left[{\dfrac{{\sqrt{x y}}-{\sqrt{x}}}{{\sqrt{x y}}+1}}-{\dfrac{{\sqrt{x y}}+{\sqrt{x}}}{{\sqrt{x y}}-1}}\right]\]

\[= \left[\dfrac{2\Bigl[1+\sqrt{x y}\Bigr]-2\sqrt{x y}-1}{1+\sqrt{x y}}+\dfrac{1}{1-\sqrt{x y}}+\dfrac{2\sqrt{x}}{1-x y}\right] : \left[{\dfrac{\left[{\sqrt{x y}}-{\sqrt{x}}\right]\left[{\sqrt{x y}}-1\right]-\left[{\sqrt{x y}}+{\sqrt{x}}\right]\left[{\sqrt{x y}}+1\right]}{\left[{\sqrt{x y}}+1\right]\left[{\sqrt{x y}}-1\right]}}\right] \\ = \left[{\dfrac{1}{1 + {\sqrt{x y}}}}+{\dfrac{1}{1 - {\sqrt{x y}}}}+{\dfrac{2{\sqrt{x}}}{1-x y}}\right] : \dfrac{x y-\sqrt{x y}-x\sqrt{y}+\sqrt{x}-x y-\sqrt{x y}-x\sqrt{y}-\sqrt{x}}{x y - 1} \\ = {\dfrac{1-{\sqrt{x y}}+1+{\sqrt{x y}}+2{\sqrt{x}}}{1-x y}} . \dfrac{x y-1}{-2x{\sqrt{y_{-}}}-2{\sqrt{x y}}} \\ = {\dfrac{2+2{\sqrt{x}}}{1-x y}}.{\dfrac{1-x y}{2{\sqrt{x y}}[{\sqrt{x}}+1]}} \\ = \dfrac{1}{\sqrt{x y}}\]

Vậy \[A = \dfrac{1}{\sqrt{x y}}\] với \[x > 0, y > 0, xy \neq 1\]

2.

\[B=a\sqrt{2a^{6}-4a^{4}+4a^{2}+3a}-\sqrt{2a^{2}+3a+2} = a{\sqrt{2a^{2}+3a+2[a^{3}-a]{2}}} - {\sqrt{2a{2}+3a+2}}\]

\[B = [a - 1] {\sqrt{2a_{-}^{2}+3a+2}}\] [1]

\[B^{2} = [a - 1]{2} . [2a{2} + 3a + 2] = \left[a^{2}{-}2a{+}1\right].[2a^{2}{+}3a{+}2] = 2a {4} - a {3} - 2a {2} -a + 2 = \left[2a-1\right]\left[a{3}- a -1\right] + 1=1\] [2]

Vì \[a[a^{2} - 1] = 1\] nên \[a \neq 0\]

Nếu a < 0 thì \[a[a^{2} - 1] = 1\]

\[\begin{cases}{{a^{2} - 1 0. Suy ra: \[a^{3} = a + 1 > 1 \Rightarrow a > 1 \Rightarrow a - 1 > 0 \Rightarrow B > 0\] [3]

Từ [1] [2] [3] suy ra: B = 1

Câu II [4,0 điểm]

1. Giải phương trình:

\[3{{\sqrt{x{3}+5x^{2}}}}-1={\sqrt{{\dfrac{5x^{2}-2}{6}}}}\]

2. Giải hệ phương trình:

\[\begin{cases}{{x^{2}y^{2}+3x+3y-3=0}}\\ {{x^{3}y-4x^{2}y-3x y^{2}+2x y-x^{2}+x=0}}\end{cases}\]

Giải

1.

ĐKXĐ: \[x ^ {3} \geq \dfrac {2}{5}\] [*]

Đặt \[t =\,{\sqrt{\dfrac{5x^{2}-2}{6}}}\] [\[t \geq 0\]]. Suy ra \[5x^{2} = 6 t^{2} + 2\]

\[{{3}\sqrt{x{3} + 5x^{2}}} -1=t \Rightarrow x {3} + 6 t{2} + 2 = {[t+1]{3}} \Leftrightarrow x {3} = {[t+1]^{3}} \Leftrightarrow x = t - 1 \Leftrightarrow t = x + 1\]

\[\sqrt{\dfrac{5x^{2}-2}{6}}=x+1 \Leftrightarrow \begin{cases}{{x \geq 1}}\\ {{\sqrt{\dfrac{5x^{2}-2}{6}}=[x+1]^2}}\end{cases} \\ \Leftrightarrow \begin{cases}{{x \geq 1}}\\ {{x ^2 + 12x + 8 = 0}}\end{cases} \\ \Leftrightarrow x = -6 + 2\sqrt{7}\]

So sánh với điều kiện [*] thì phương trình có nghiệm là \[x = -6 + 2\sqrt{7}\]

2.

\[\begin{cases}{{x^{2}y^{2}+3x+3y-3=0}} \ \ \ [1] \\ {{x^{3}y-4x^{2}y-3x y^{2}+2x y-x^{2}+x=0}} \ \ \ [2] \end{cases}\]

Lấy phương trình [2] cộng với phương trình [1] theo vế, ta có:

\[x^{2}y^{2}+3x+3y-3 + x^{3}y-4x^{2}y-3x y^{2}+2x y-x^{2}+x = 0 \\ \Leftrightarrow [x^3y+x^2y^2-x^2y]-[x^2+xy-x]-[3x^2y+3xy^2-3xy]+[3x+3y-3]=0 \\ \Leftrightarrow x^2y[x+y-1]-x[x+y-1]-3xy[x+y-1]+3[x+y-1]=0 \\ \Leftrightarrow [x+y-1][x^2y-3xy-x+3]=0 \Leftrightarrow \left[\begin{array}{c}{{x+y-1=0}}\\ {{[x^2y-3xy-x+3]=0}}\end{array}\right.\]

Với x + y - 1 = 0 => y = 1 - x thế vào [1]

\[\Leftrightarrow x^2[1-x]^2 = 0 \Leftrightarrow \left[\begin{array}{c}{{x=0 \Rightarrow y=1}}\\ {{x=1 \Rightarrow y=0}}\end{array}\right.\]

Với \[[x^2y-3xy-x+3]=0 \Leftrightarrow [x-3][xy-1] = 0 \Leftrightarrow \left[\begin{array}{c}{{x-3=0}}\\ {{xy-1=0}}\end{array}\right. \Leftrightarrow \left[\begin{array}{c}{{x=3}}\\ {{x=\dfrac{1}{y}}}\end{array}\right.\]

Khi x = 3 thế vào [1] \[\Leftrightarrow 9y^3 + 3y+6=0\] [vô nghiệm]

Khi \[x = \dfrac {1}{y}\] thế vào [1] \[\Leftrightarrow 3y^3 - 2y+3=0\] [vô nghiệm]

Vậy tập nghiệm của hệ phương trình là S = {[0;1],[1;0]}

Câu III [4,0 điểm]

1. Giải phương trình nghiệm nguyên:

\[y={^3{\sqrt{2+{\sqrt{x}}}}}+{^3{\sqrt{2-{\sqrt{x}}}}}\]

2. Cho n là số nguyên dương thỏa mãn \[3^{n} - 1\] chia hết cho \[2^{2024}\].

Chứng minh rằng \[n\geq2^{2022}\]

Giải

1.

\[y={^3{\sqrt{2+{\sqrt{x}}}}}+{^3{\sqrt{2-{\sqrt{x}}}}}\] [1]

ĐKXĐ: \[x \geq 0\]

Nhận thấy: \[y={^3{\sqrt{2+{\sqrt{x}}}}} > {^3{\sqrt{-2+{\sqrt{x}}}}}\] nên

\[y={^3{\sqrt{2+{\sqrt{x}}}}}+{^3{\sqrt{2-{\sqrt{x}}}}} > {^3{\sqrt{-2+{\sqrt{x}}}}}+{^3{\sqrt{2-{\sqrt{x}}}}} = 0 => y > 0\]

Lập phương 2 vế của [1] ta được:

\[y^3=4+3[{^3{\sqrt{2+{\sqrt{x}}}}} + {^3{\sqrt{2-{\sqrt{x}}}}}]{^3{\sqrt{4-x}}} \Rightarrow y^3=4+3.y.{{^3{\sqrt{4-x}}}} \Rightarrow {{^3{\sqrt{4-x}}}} = \dfrac{y^3-4}{3y}\] [vì y > 0] [2]

Vì \[x \geq 0\] nên \[ {{^3{\sqrt{4-x}}}} = \dfrac{y^3-4}{3y} \leq {^3{\sqrt{4}}}\]

\=> \[y^3 \leq 3y.{^3{\sqrt{4}}} + 4 \Leftrightarrow y^3 - 3y.{^3{\sqrt{4}}} \leq 4 \Leftrightarrow y[y^2-3.{^3{\sqrt{4}}}] \leq 4\] [*]

Nếu \[y \geq 3\] thì \[y[y^2-3.{^3{\sqrt{4}}}] \geq 3.[9-3.{^3{\sqrt{4}}}] > 4\] mâu thuẫn với [*]

Do đó y < 3 kết hợp vói y > 0 ta được \[y\in\{1,2\}\] vì y nguyên

+. Xét y = 2 thay vào [2] ta được: \[{{^3{\sqrt{4-x}}}} = \dfrac {2}{3}\] [vô lý, vì \[x\in Z\] ]

+. Xét y = 1 thay vào [2] ta được: \[{{^3{\sqrt{4-x}}}} = -1 \Leftrightarrow x = 5\]

Thử lại ta thấy x = 5 và y = 1 thỏa mãn bài toán

Vậy phương trình có nghiệm: [x;y] = [5;1]

2]

Vì n > 0 nên ta đặt \[n = 2^k .m\] [\[k;m \in Z\]; m lẻ]

Ta có: \[3^n-1=[3^{2^k}]m -1= [3{2^k} - 1] [[3^{2^k}]{m-1} + [3{2^k}]{m-2} + ... +3{2^k} +1]\]

Do m lẻ nên tổng \[[3^{2^k} - 1] [[3^{2^k}]{m-1} + [3{2^k}]{m-2} + ... +3{2^k} +1]\] có lẻ số hạng nên tổng đó là số lẻ

Do đó \[3^{n} - 1 \ \vdots \ 2^{2024} \Leftrightarrow 3^{2^k} - 1 \ \vdots \ 2^{2024}\]

Ta lại có:

\[[3^{2^k} - 1] = [3-1][3+1][3^2+1][3^{2^2}+1][3^{2^3}+1]...[3^{2^{k-1}}+1] \\ = 2^3[3^2+1][3^{2^2}+1][3^{2^3}+1]...[3^{2^{k-1}}+1]\]

Với \[a \in [{1;2;3;...;k-1}]\] , ta có

\[3^{2^k} +1 = [[3^{2^{k-1}}]2-1] + 2 = [3{2^{k-1}}-1][3^{2^{k-1}}+1] +2\]

Vì \[[3^{2^{k-1}}-1] và [3^{2^{k-1}}+1]\] là các số chẵn nên tích chia hết cho 4

Do đó \[3^{2^k} +1\] chia hết cho 2 nhung không chia hết cho 4

\[\Rightarrow [3^2+1][3^{2^2}+1][3^{2^3}+1]...[3^{2^{k-1}}+1] \ \vdots \ 2^{k-1} \\ \Rightarrow 2^3[3^2+1][3^{2^2}+1][3^{2^3}+1]...[3^{2^{k-1}}+1] \ \vdots \ 2^{k+2} \\ \Rightarrow 3^n -1 \ \vdots \ 2^{k+2}\]

Để \[3^n -1 \ \vdots \ 2^{2024}\] thì \[2^{k+2} \ \vdots \ 2^{2024}\] \=> \[k+2 \geq 2024\]

\=> \[k \geq 2022\] \=> \[n=2^k.m \geq 2^k \geq 2^{2022}\]

Vậy ta có điều phải chứng minh

Câu IV [6 điểm]

Cho tam giác đều ABC có độ dài cạnh bằng \[2{\sqrt{3}}\] và đường cao AH. Trên đoạn BH lấy điểm M tùy ý [M không trùng B, H]. Gọi P, Q lần lượt là chân đường vuông góc kẻ từ M đến AB, AC

1. Chứng minh giá trị của biểu thức MP + MQ không phụ thuộc và vị trí của điểm M

2. Gọi K là trung điểm của AM

  1. Chứng minh rằng tứ giác PKQH là hình thoi
  1. Gọi S là diện tích hình thoi PKQH. Biết khi điểm M thay đổi thì S nhận đúng một giá trị nguyên dương. Tìm giá trị nguyên dương đó

3. Vẽ đường tròn [O] nội tiếp tam giác ABM. Gọi D, E, F theo thứ tự là tiếp điểm của [O] với các cạnh BM, AB, AM. Vẽ DN vuông góc với EF tại N. Chứng minh \[{\widehat{B N E}}={\widehat{M N F}}\]

Giải

1.

Trong \[\Delta B M P\] vuông ở P, ta có: \[MP = MB.sinMBP=MB.sin60^0=\dfrac {{\sqrt{3}}}{2}MB\]

Tương tự, ta chứng minh được: \[MQ = \dfrac {{\sqrt{3}}}{2} MC\]

\=> \[MP+MQ= \dfrac {{\sqrt{3}}}{2}[MB+MC]=\dfrac {{\sqrt{3}}}{2}BC=\dfrac {{\sqrt{3}}}{2}.2{\sqrt{3}}=3\] không phụ thuộc vào vị trí của điểm M

2.

a.

Do \[{\widehat{A P M}}={\widehat{A Q M}} = {\widehat{A H M}} = 90^o\] nên theo tính chất đường trung tuyến của tam giác vuông, ta có

\[KP = KQ = KH = \dfrac {1}{2}AM\] [1]

Trong \[\Delta PKH\] cân ở K có \[{\widehat{P K H}}=2{\widehat{P A H}} = 2{\widehat{B A H}} = 2.30^o= 60^o\]

Vậy \[\Delta PKH\] đều => HP = HK [2]

Tương tự, ta chứng minh được \[\Delta QKH\] \=> HQ = HK [3]

Từ [1] [2] [3] ta được \[HP = PK = KQ = QH = HK = \dfrac {1}{2}AM\] nên tú giác PKQH là hình thoi

b.

Ta có \[S=S_{PKQH}=2S_{PKH}=2.KH^2.\dfrac {{\sqrt{3}}}{4}=\dfrac {{\sqrt{3}}}{2}KH^2=\dfrac {{\sqrt{3}}}{8}AM^2>\dfrac {{\sqrt{3}}}{8}AH^2=\dfrac {9{\sqrt{3}}}{8}\]

\[S=S_{PKQH}=\dfrac {{\sqrt{3}}}{8}AM^2

Chủ Đề