Bất phương trình có nghiệm thực khi nào

Câu hỏi: Lưu ý khi giải bất phương trình?

Trả lời:

- Lưu ý khi giải bất phương trình bậc nhất một ẩn

Bất phương trình bậc nhất một ẩn ax + b >0 là dạng tổng quát để hướng dẫn học sinh giải toán. Đầu tiên, các em tìm ra nghiệm của bất phương trình, sau đó hướng dẫn các em biểu diễn trên trục số kết quả tìm được và đưa vào tập nghiệm của bất phương trình. Bất phương trình bậc nhất một ẩn khá dễ chinh phục, các gia sư cũng cần đưa ra những bài mẹo, những bài có kết quả vô nghiệm để kích thích tính tư duy sáng tạo trong toán học của các em. Lưu ý điều kiện trước khi giải bất kỳ bài toán nào nhé.

- Lưu ý khi giải bất phương trình tích

Bất phương trình dạng này khá phức tạp, tất nhiên trước tiên các em cần sử dụng các phép biến đổi để đưa các bất phương trình về dạng bất phương trình tích. Tìm tất cả các nghiệm của mỗi phương trình bậc nhất nhỏ trong tích, sau đó xét dấu bằng bảng biến thiên. Tìm nghiệm tùy vào dấu của bất phương trình, nếu bất phương trình là <0 thì chọn giá trị x tại những ô f(x) mang giá trị âm và ngược lại. Học sinh cần làm tốt việc giải bất phương trình bật nhất một ẩn thành thạo và có thể sử dụng tốt các kiến thức bổ trợ mới có thể làm tốt bài tập này.

Cùng Top lời giải tìm hiểu nội dung bài Cách giải bất phương trình ở bài viết dưới đây nhé.

1. Bất phương trình là gì?

- Khác với phương trình, bất phương trình có hai vế không bằng nhau, có thể lớn hơn hoặc nhỏ hơn. Nghiệm của bất phương trình không phải chỉ là một giá trị mà sẽ bao gồm cả một tập hợp giá trị thỏa mãn điều kiện của bất phương trình.

- Có rất nhiều dạng bất phương trình khác nhau như: bất phương trình bậc một, bất phương trình bậc hai, bất phương trình vô tỷ, bất phương trình chứa căn, bất phương trình logarit. Mỗi dạng bài lại có một cách giải bất phương trình khác nhau, tùy theo đặc điểm của bất phương trình.

2. Phương pháp giải bất phương trình

* Bất phương trình bậc nhất một ẩn

Là bất phương trình dạng: a.x + b>0

+ Trường hợpa # 0

- Nếua> 0, tập nghiệm là:

- Nếua< 0, tập nghiệm là:

+ Trường hợpa= 0

- Nếub> 0, Phương trình vô số nghiệm.

- Nếub< 0, Phương trình vô nghiệm.

* Bất phương trình bậc 2một ẩn

Là bất phương trình dạng:a.x2+ b.x + c > 0 với a # 0

ĐặtΔ = b2− 4.a.c. Ta có các trường hợp sau:

+ Nếu Δ < 0:

- a < 0 thì BPT không nghiệm đúng với mọi giá trị thực của x. Tập nghiệm là:∅.

- a > 0 thì BPT nghiệm đúng với mọi giá trị thực của x. Tập nghiệm là: R.

+ Nếu Δ = 0:

- a < 0 thì BPT không nghiệm đúng với mọi giá trị thực củax. Tập nghiệm là:∅.

- a > 0 thì BPT nghiệm đúng với mọi giá trị thực củax. Tập nghiệm là:

+ Nếu Δ > 0, gọix1, x2(x1< x2)là hai nghiệm củaphương trình bậc haia.x2+ b.x + c = 0với

+ Khi đó:

- Nếua> 0 thì tập nghiệmlà:(−∞; x1) ∪ (x2; +∞)

- Nếua< 0 thì tập nghiệmlà:(x1; x2)

*Bất phương trình logarit cơ bản

- Với cơ số a dương và khác 1, các bất phương trình có 1 trong các dạng sau gọi là bất phương trình logarit cơ bản:

- Với mỗi dạng bất phương trình trên, tùy thuộc vào cơ số cách giải có điểm khác nhau. Tuy nhiên các bạn có thể nhớ 1 điểm chung là giá trị củabiến x phải dươngđể logarit xác định. Đồng thời các bất phương trình cơ bản này đều có thể giải theo kiểumũ hóa 2 vế với cơ số a. Và khi mũ hóa như vậy thì a>1 bất phương trình sẽ không đổi chiều. Ngược lại với 0

*Bất phương trình logarit chứa tham số

- Với bất phương trình logarit có chứa tham số thì câu hỏi khá đa dạng. Trong đó câu hỏitìm m để bất phương trình có nghiệm thỏa mãn điều kiện cho trướckhá phổ biến.

- Lưu ý chung đối với dạng toán này là khi biến đổi ta cần biến đổi trương đương thì mới đánh giá được miền nghiệm.

3. Ví dụ về bất phương trình

Bài 1:Giải bất phương trình chứa căn sau:

Vậy nghiệm của BPT là x = 0 hoặcx = 98

Bài 2:Tìm m để bất phương trìnhcó nghiệm duy nhất:

Ví dụ:

Lời giải:

4. Các quy tắc của bất phương trình

Có hai quy tắc cơ bản trong giải bất phương trình là quy tắc chuyển vế và quy tắc nhân.

+ Nhắc đến quy tắc chuyển vế trong giảibất phương trình bạn có thể nhớ nhanh bằng cụmtừchuyển vế, đổi dấu. Khi chuyển một hạng tử của bất phương trình sang vế khác, bạn cần phải chú ý đổi dấu của hàng tử đó.

+ Quy tắc nhân với một số cũng tương đối đơn giản. Khi nhân cả hai vế của bất phương trình với một số dương, bạn giữ nguyên chiều và ngược lại khi nhân cả hai vế với số âm bạn cần đổi chiều của bất phương trình.

Từ định lí về dấu tam thức bậc hai tất cả chúng ta hoàn toàn có thể giải được những phương trình, bất phương trình tích, phương trình chứa căn, giải bất phương trình chứa căn. Đồng thời, từ đó hoàn toàn có thể suy ra cách giải bài toán tìm điều kiện của tham số để tam thức bậc 2 ( bất phương trình bậc hai ) luôn dương, luôn âm với mọi \ ( x \ ) thuộc \ ( \ mathbb { R } \ ), tìm điều kiện để bất phương trình nghiệm đúng với mọi số thực \ ( x \ ), tìm điều kiện để bất phương trình vô nghiệm Đây là một dạng toán quan trọng, xuyên suốt chương trình Đại số và Giải tích ở cấp trung học phổ thông .Nếu bài viết có ích, bạn hoàn toàn có thể ủng hộ chúng tôi bằng cách bấm vào những banner quảng cáo hoặc khuyến mãi tôi 1 cốc cafe vào số thông tin tài khoản Agribank 3205215033513. Xin cảm ơn !Để hiểu về những dạng toán tìm điều kiện để phương trình luôn đúng, vô nghiệm tất cả chúng ta cần thành thạo những dạng bàiLý thuyết và bài tập dấu tam thức bậc hai .

Xem thêm ĐỀ CƯƠNG HỌC KÌ 2 TOÁN 10

Bạn đang đọc: Điều kiện de bất phương trình có nghiệm thực

1. Tìm điều kiện để tam thức bậc hai luôn dương, luôn âm

Bài toán 1. Cho tam thức bậc hai \( f(x)=ax^2 +bx+c \), tìm điều kiện của tham số \(m\) để \( f(x) >0\) với mọi \( x \) thuộc \( \mathbb{R}\).

Để xử lý bài toán trên, tất cả chúng ta cần xét hai trường hợp :

  • Khi \( a=0 \), ta kiểm tra xem lúc đó \( f(x) \) như thế nào, có thỏa mãn yêu cầu bài toán hay không.
  • Khi \( a\ne 0 \), thì \(f(x)\) là một tam thức bậc hai, nên \( f(x)>0 \) với mọi \( x\in \mathbb{R} \) khi và chỉ khi \[\begin{cases}
    a>0\\ \Delta <0
    \end{cases}\]

Tương tự, tất cả chúng ta có những bài toán sau :

Bài toán 2. Cho \( f(x)=ax^2 +bx+c \), tìm điều kiện của tham số \(m\) để \( f(x) <0\)>

Cần xét hai trường hợp :

  • Kiểm tra khi \( a=0 \).
  • Khi \( a\ne 0 \), thì \( f(x)>0 \) với mọi \( x\in \mathbb{R} \) tương đương với \[\begin{cases}
    a<0\\>\end{cases}\]

Bài toán 3. Cho \( f(x)=ax^2 +bx+c \), tìm điều kiện của tham số \(m\) để \( f(x) \ge 0\) với mọi \( x \) thuộc \( \mathbb{R} \).

Xét hai trường hợp :

  • Khi \( a=0 \), ta kiểm tra xem lúc đó \( f(x) \) như thế nào, có thỏa mãn yêu cầu bài toán hay không.
  • Khi \( a\ne 0 \), thì \( f(x)>0 \) với mọi \( x\in \mathbb{R} \) tương đương với \[\begin{cases}a>0\\ \Delta \le 0

    \end{cases}\]

Bài toán 4. Cho hàm số \( f(x)=ax^2 +bx+c \), tìm điều kiện của tham số \(m\) để \( f(x) \le 0\) với mọi \( x \) thuộc \( \mathbb{R} \).

Để xử lý bài toán trên, tất cả chúng ta cần xét hai trường hợp :

  • Khi \( a=0 \), ta kiểm tra xem lúc đó \( f(x) \) như thế nào, có thỏa mãn yêu cầu bài toán hay không.
  • Khi \( a\ne 0 \), thì \( f(x)>0 \) với mọi \( x\in \mathbb{R} \) tương đương với \[\begin{cases}
    a<0\\>\end{cases}\]

Ví dụ 1. Tìm \(m\) để hàm số \(f(x)=3 x^{2}+ x+m+1>0\) với mọi \(x\in \mathbb{R}\).

Hướng dẫn. Hàm số \(f(x)=3 x^{2}+ x+m+1>0\) với mọi \(x\in \mathbb{R}\) khi và chỉ khi \[\begin{cases}
a=3>0\\ \Delta =-12m-11<0
\end{cases} \] Giải hệ này, từ đó tìm được đáp số \( m<\frac{-11}{12}>

Ví dụ 2. Tìm \(m\) để biểu thức sau luôn dương với mọi \(x\) \[f(x)=(m-1) x^{2}+(2 m+1) x+m+1.\]

Hướng dẫn.Chúng ta xét hai trường hợp:

  • Trường hợp 1. \( m-1=0 \Leftrightarrow m=1 \). Lúc này bất phương trình \(f(x)>0\) tương đương với \( 3 x+2>0 \Leftrightarrow x>-\frac{2}{3} \) Rõ ràng tập nghiệm này không đáp ứng được mong muốn của đề bài (đề bài yêu cầu là \(f(x)>0\) với mọi \( x\in R \)), do đó \( m=1 \) không thỏa mãn yêu cầu.
  • Trường hợp 2. \(m \neq 1\), khi đó \(f(x)>0,\,\forall x \in \mathbb{R}\) tương đương với \( \begin{array}{l}& \left\{\begin{array}{l}m-1>0 \\

    \Delta=4 m+5<0
    \end{array}\right. \\\Leftrightarrow& \left\{\begin{array}{l}m>1 \\

    m<-\frac{5}{4}
    \end{array}\right.
    \end{array} \) Rất tiếc hệ này cũng vô nghiệm.

Xem Thêm  Cố phiếu tiếng Anh là gì? Giá cổ phiếu tiếng Anh là gì?

Tóm lại, không tìm được giá trị nào của \ ( m \ ) thỏa mãn nhu cầu nhu yếu đề bài .

2. Tìm điều kiện để bất phương trình luôn đúng, vô nghiệm

Đối với những bài toán tìm điều kiện để bất phương trình luôn đúng ( nghiệm đúng ) với mọi \ ( x \ ) thuộc \ ( \ mathbb { R } \ ) thì ta làm như phần trên. Đối với những bài toán tìm điều kiện để bất phương trình vô nghiệm thì ta sử dụng những lập luận sau

  • Bất phương trình \( f(x)>0 \) vô nghiệm tương đương với
    \[ f(x) \le 0, \forall x\in \mathbb{R}\]
  • Bất phương trình \( f(x)<0>\[ f(x) \ge 0, \forall x\in \mathbb{R}\]
  • Bất phương trình \( f(x)\ge 0 \) vô nghiệm tương đương với
    \[ f(x) < 0, \forall x\in \mathbb{R}\]
  • Bất phương trình \( f(x)\le 0 \) vô nghiệm tương đương với
    \[ f(x) > 0, \forall x\in \mathbb{R}\]

Đây chính là 4 bài toán đã xét ở phần trước. Sau đây tất cả chúng ta sử dụng những tác dụng trên để xử lý một số ít bài tập .

Ví dụ 1.Tìm tất cả các giá trị của tham số \(m\) để bất phương trình \[ (m-1){{{x}}^{2}}+2(m-1)x+1\ge 0 \] nghiệm đúng với \( \forall x\in \mathbb{R} \).

Hướng dẫn. Bất phương trình nghiệm đúng với mọi \(x\in \mathbb{R}\) thì cũng chính là \[f(x)\ge 0,\, \forall x\in \mathbb{R},\] trong đó \(f(x)=(m-1){{x}^{2}}+2(m-1)x+1\). Do đó, chúng ta xét hai trường hợp:

  • Trường hợp 1. Khi \(m=1\), bất phương trình trở thành \[0x^2+0x+1\ge 0\] Rõ ràng bất phương trình này luôn đúng với mọi \(x\in \mathbb{R}\). Nên giá trị \(m=1\) thỏa mãn yêu cầu.
  • Trường hợp 2. Khi \( m\ne 1 \), thì \(f(x)\) là tam thức bậc hai nên \(f(x) \ge 0,\, \forall x\in \mathbb{R}\) khi và chỉ khi\begin{align}&\begin{cases}m-1>0 \\{{(m-1)}^{2}}-(m-1)\le 0 \\\end{cases}\\\Leftrightarrow & \begin{cases}m>1 \\{{m}^{2}}-3m+2\le 0 \\\end{cases}\\\Leftrightarrow & \begin{cases}m>1 \\1\le m\le 2 \\

    \end{cases} \Leftrightarrow 1\end{align}

Kết luận. Kết hợp cả 2 trường hợp, chúng ta có đáp số \( m\in \left[ 1;2 \right] \).

Ví dụ 2. Cho hàm số \(f(x)=(m-1){{x}^{2}}+2mx-3\) trong đó \(m\) là tham số. Tìm tất cả giá trị của \(m\) để bất phương trình \(f(x)>0\) vô nghiệm.

Hướng dẫn. Chúng ta xét hai trường hợp:

  • Khi \( m=1 \), bất phương trình \(f(x)>0\) trở thành \[ 2x-3>0\Leftrightarrow x>\frac{3}{2}. \] Suy ra \(m=1\) không thỏa mãn yêu cầu.
  • Khi \( m\ne 1 \) thì \(f(x)\) là tam thức bậc hai. Yêu cầu bài toán tương đương với \[f(x)\le 0,\forall x\in \mathbb{R}\]Điều kiện cần và đủ là \[ \left\{ \begin{align}
    & m-1<0>& \Delta={{m}^{2}}+3(m-1)\le 0 \\
    \end{align} \right. \]Giải hệ bất phương trình trên, tìm được đáp số \( m\in \left[ \frac{-3-\sqrt{21}}{2};\frac{-3+\sqrt{21}}{2} \right]. \)

Ví dụ 3. Cho \(f(x)=(m-2){{x}^{2}}-2(2-m)x+2m-1\), với \(m\) là tham số.

  1. Tìm tất cả các giá trị của \(m\) để phương trình \(f(x)=0\) nhận \( x=-2 \) làm nghiệm.
  2. Tìm tất cả các giá trị của \(m\) để hàm số \( y=\sqrt{f(x)} \) được xác định với mọi giá trị của \( x\in \mathbb{R} \).

Hướng dẫn.

1. Phương trình \(f(x)=0\) nhận \(x=-2\) làm nghiệm khi và chỉ khi \(f(-2)=0\). Điều này tương đương với
\[ (m-2){{(-2)}^{2}}-2(2-m)(-2)+2m-1=0\Leftrightarrow m=\frac{1}{2} \] Vậy \( m=\frac{1}{2} \) là giá trị cần tìm.

2. Hàm số \( y=\sqrt{f(x)} \) được xác định với mọi giá trị của \(x\in \mathbb{R}\) khi và chỉ khi:\[f(x)\ge 0,\forall x\in \mathbb{R}\] \[ \Leftrightarrow (m-2){{x}^{2}}-2(2-m)x+2m-1\ge 0,\forall x\in \mathbb{R}\,\,\,\,(1) \] Chúng ta xét hai trường hợp:

  • Trường hợp 1: \( m-2=0\Leftrightarrow m=2 \) thì (1) có dạng \(3\ge 0,\forall x\in \mathbb{R}\) (luôn đúng)
  • Trường hợp 2: \( m-2\ne 0\Leftrightarrow m\ne 2 \). Lúc đó (1) xảy ra khi và chỉ khi: \begin{align}&\left\{ \begin{array}{l}m \ne 2\\\Delta \le 0\\m 2 > 0\end{array} \right.\\\Leftrightarrow &\left\{ \begin{array}{l}m > 2\\{(2 m)^2} (m 2)(2m 1) \le 0\end{array} \right.\\\Leftrightarrow &\left\{ \begin{array}{l}m > 2\\(2 m)(m + 1) \le 0\end{array} \right.\\\Leftrightarrow &\left\{ \begin{array}{l}m > 2\\\left[ \begin{array}{l}m \le 1\\m \ge 2\end{array} \right.\end{array} \right. \Leftrightarrow m > 2

    \end{align}

Kết luận: Vậy các số thực \( m\ge 2 \) thỏa mãn yêu cầu bài toán.

3. Bài giảng về bất phương trình bậc 2

Chi tiết về những dạng toán trên, mời những bạn xem trong video sau :

Source: https://hoibuonchuyen.com
Category: Hỏi Đáp