Soạn toán 11 bài giới hạn của dãy số năm 2024

Tài liệu gồm 154 trang, được biên soạn bởi thầy giáo Nguyễn Trọng, tóm tắt lý thuyết, hướng dẫn giải các dạng toán và tuyển chọn các bài tập chuyên đề giới hạn và liên tục, giúp học sinh lớp 11 tham khảo khi học sinh trình Đại số và Giải tích 11 chương 4.

BÀI 1. GIỚI HẠN CỦA DÃY SỐ.

  1. TÓM TẮT LÝ THUYẾT.
  2. DẠNG TOÁN VÀ BÀI TẬP. Dạng 1. Tính giới hạn L = lim P(n)/Q(n) với P(n), Q(n) là các đa thức. Dạng 2. Tính giới hạn dạng L = lim P(n)/Q(n) với P(n), Q(n) là các hàm mũ an. Dạng 3. Tính giới hạn của dãy số chứa căn thức.
  3. BÀI TẬP RÈN LUYỆN.

BÀI 2. GIỚI HẠN CỦA HÀM SỐ.

  1. TÓM TẮT LÝ THUYẾT.
  2. DẠNG TOÁN VÀ BÀI TẬP. Dạng 1. Tính giới hạn vô định dạng 0/0, trong đó tử thức và mẫu thức là các đa thức. Dạng 2. Tính giới hạn vô định dạng 0/0, trong đó tử thức và mẫu thức có chứa căn thức. Dạng 3. Giới hạn của hàm số khi x tiến đến vô cực. Dạng 4. Giới hạn một bên x tiến đến x0+ hoặc x tiến đến x0-. Dạng 5. Giới hạn của hàm số lượng giác.
  3. BÀI TẬP RÈN LUYỆN.

BÀI 3. HÀM SỐ LIÊN TỤC.

  1. TÓM TẮT LÝ THUYẾT.
  2. DẠNG TOÁN VÀ BÀI TẬP. Dạng 1. Xét tính liên tục của hàm số tại một điểm. Dạng 2. Xét tính liên tục của hàm số trên tập xác định. Dạng 3. Chứng minh phương trình có nghiệm.
  3. BÀI TẬP RÈN LUYỆN.

BÀI 4. ÔN TẬP CHƯƠNG IV.

  • Giới Hạn - Hàm Số Liên Tục

Ghi chú: Quý thầy, cô và bạn đọc có thể chia sẻ tài liệu trên TOANMATH.com bằng cách gửi về: Facebook: TOÁN MATH Email: [email protected]

Tài liệu gồm 37 trang, tóm tắt lý thuyết trọng tâm, các dạng toán và bài tập chủ đề giới hạn dãy số, có đáp án và lời giải chi tiết, giúp học sinh lớp 11 tham khảo khi học chương trình Đại số và Giải tích 11 chương 4: Giới Hạn.

Tài liệu được biên soạn bởi nhóm tác giả: PGS.TS Lê Văn Hiện, Trần Minh Ngọc, Nguyễn Hồng Quân, Nguyễn Đình Hoàn, Lý Công Hiếu, Nguyễn Văn Vũ, Nguyễn Đỗ Chiến, Nguyễn Ngọc Chi, Nguyễn Văn Ái, Nguyễn Hoàng Việt, Nguyễn Thị Thắm, Nguyễn Vũ Minh, Phan Xuân Dương, Nguyễn Hữu Bắc.

Kiến thức: + Hiểu được khái niệm giới hạn của dãy số. + Biết được một số định lí giới hạn của dãy số, cấp số nhân lùi vô hạn. Kĩ năng: + Áp dụng khái niệm giới hạn dãy số, định lí về giới hạn của dãy số vào giải các bài tập. + Biết cách tính giới hạn của dãy số. + Biết cách tính tổng của một cấp số nhân lùi vô hạn.

  1. LÍ THUYẾT TRỌNG TÂM. II. CÁC DẠNG BÀI TẬP. Dạng 1: Dãy số có giới hạn bằng định nghĩa. + Bài toán 1. Chứng minh dãy số có giới hạn 0 bằng định nghĩa. + Bài toán 2. Giới hạn của dãy số có số hạng tổng quát dạng phân thức. Dạng 2: Dãy số có giới hạn hữu hạn. + Bài toán 1. Sử dụng định nghĩa chứng minh rằng lim un = L. + Bài toán 2. Chứng minh một dãy số có giới hạn. + Bài toán 3. Tính giới hạn của dãy số bằng các định lí về giới hạn. + Bài toán 4. Tính tổng của cấp số nhân lùi vô hạn. Dạng 3. Dãy số có giới hạn vô cực. III. ĐÁP ÁN VÀ HƯỚNG DẪN GIẢI.
  • Giới Hạn - Hàm Số Liên Tục

Ghi chú: Quý thầy, cô và bạn đọc có thể chia sẻ tài liệu trên TOANMATH.com bằng cách gửi về: Facebook: TOÁN MATH Email: [email protected]

- Dãy số \(\left( {{u_n}} \right)\) có giới hạn 0 khi n dần tới dương vô cực, nếu \(\left| {{u_n}} \right|\) có thể nhỏ hơn một số dương bé tùy ý , kể tử một số hạng nào đó trở đi.

Kí hiệu \(\mathop {\lim }\limits_{n \to + \infty } {u_n} = 0\) hay \({u_n} \to 0\) khi \(n \to + \infty \) hay \(\lim {u_n} = 0\).

- Dãy số \(\left( {{u_n}} \right)\)có giới hạn là số thực a khi n dần tới dương vô cực, nếu \(\mathop {\lim }\limits_{n \to + \infty } \left( {{u_n} - a} \right) = 0\), kí hiệu \(\mathop {\lim }\limits_{n \to + \infty } {u_n} = a\)hay \({u_n} \to a\) khi \(n \to + \infty \)hay \(\lim {u_n} = a\).

* Chú ý: Nếu \({u_n} = c\) (c là hằng số) thì \(\mathop {\lim }\limits_{n \to + \infty } {u_n} = c\)

2. Một số giới hạn cơ bản

+ \(\lim \frac{1}{n} = 0,\lim \frac{1}{{{n^k}}} = 0,k \in \mathbb{Z}.\)

+ \(\lim \frac{c}{n} = 0,\lim \frac{c}{{{n^k}}} = 0,k \in \mathbb{Z}\), c là hằng số.

+ Nếu \(\left| q \right| < 1\) thì \(\lim {q^n} = 0\)

+ \(\lim {\left( {1 + \frac{1}{n}} \right)^n} = e\)

3. Định lí về giới hạn hữu hạn của dãy số

a, Nếu \(\mathop {\lim }\limits_{n \to + \infty } {u_n} = a,\mathop {\lim }\limits_{n \to + \infty } {v_n} = b\) thì

\(\mathop {\lim }\limits_{n \to + \infty } ({u_n} \pm {v_n}) = a \pm b\)

\(\mathop {\lim }\limits_{n \to + \infty } ({u_n}.{v_n}) = a.b\)

\(\mathop {\lim }\limits_{n \to + \infty } (\frac{{{u_n}}}{{{v_n}}}) = \frac{a}{b}\left( {b \ne 0} \right)\)

b, Nếu \({u_n} \ge 0\) thì với mọi n và \(\mathop {\lim }\limits_{n \to + \infty } {u_n} = a\) thì \(a \ge 0\) và \(\mathop {\lim }\limits_{n \to + \infty } \sqrt {{u_n}} = \sqrt a \).

3. Tổng của cấp số nhân lùi vô hạn

Cấp số nhân lùi vô hạn \({u_1},{u_1}q,...,{u_1}{q^{n - 1}},...\) có công bội q thỏa mãn \(\left| q \right| < 1\) được gọi là cấp số nhân lùi vô hạn.

Tổng của cấp số nhân lùi vô hạn là:

\(S = \frac{{{u_1}}}{{1 - q}}\left( {\left| q \right| < 1} \right)\)

4. Giới hạn vô cực

- Dãy số \(\left( {{u_n}} \right)\) được gọi là có giới hạn \( + \infty \)khi \(n \to + \infty \) nếu \({u_n}\) có thể lớn hơn một số dương bất kì, kể từ một số hạng nào đó trở đi, kí hiệu \(\mathop {\lim }\limits_{x \to + \infty } {u_n} = + \infty \) hay \({u_n} \to + \infty \) khi \(n \to + \infty \).

- Dãy số \(\left( {{u_n}} \right)\) được gọi là có giới hạn \( - \infty \)khi \(n \to + \infty \) nếu \(\mathop {\lim }\limits_{x \to + \infty } \left( { - {u_n}} \right) = + \infty \), kí hiệu \(\mathop {\lim }\limits_{x \to + \infty } {u_n} = - \infty \) hay \({u_n} \to - \infty \) khi \(n \to + \infty \).

*Nhận xét:

  • \(\begin{array}{l}\lim {n^k} = + \infty ,k \in {\mathbb{Z}^ + }\\\lim {q^n} = + \infty ;q \in \mathbb{R},q > 1.\end{array}\)
  • Nếu \(\mathop {\lim }\limits_{x \to + \infty } {u_n} = a\)và \(\mathop {\lim }\limits_{x \to + \infty } {v_n} = + \infty \)(hoặc\(\mathop {\lim }\limits_{x \to + \infty } {v_n} = - \infty \)) thì \(\mathop {\lim }\limits_{n \to + \infty } (\frac{{{u_n}}}{{{v_n}}}) = 0\).
  • Nếu \(\mathop {\lim }\limits_{x \to + \infty } {u_n} = a > 0\)và \(\mathop {\lim }\limits_{x \to + \infty } {v_n} = 0,\forall n\) thì \(\mathop {\lim }\limits_{n \to + \infty } (\frac{{{u_n}}}{{{v_n}}}) = + \infty \).
  • \(\mathop {\lim }\limits_{n \to + \infty } (\frac{{{u_n}}}{{{v_n}}}) = + \infty \).
  • Nếu \(\mathop {\lim }\limits_{x \to + \infty } {u_n} = + \infty \Leftrightarrow \mathop {\lim }\limits_{n \to + \infty } ( - {u_n}) = - \infty \)

Soạn toán 11 bài giới hạn của dãy số năm 2024

  • Giải mục 1 trang 59, 60, 61, 62 SGK Toán 11 tập 1 - Cánh Diều Hình 2 biểu diễn các số hạng của dãy số (left( {{u_n}} right),) với ({u_n} = frac{1}{n}) trên hệ trục tọa độ. Giải mục 2 trang 62 SGK Toán 11 tập 1 - Cánh Diều

Cho hai dãy số \(\left( {{u_n}} \right),\left( {{v_n}} \right)\) với \({u_n} = 3 + \frac{1}{n};{v_n} = 5 - \frac{2}{{{n^2}}}.\) Tính các giới hạn sau: a) \(\lim {u_n},\lim {v_n}.\) b) \(\lim \left( {{u_n} + {v_n}} \right),\lim \left( {{u_n} - {v_n}} \right),\lim \left( {{u_n}.{v_n}} \right),\lim \frac{{{u_n}}}{{{v_n}}}.\)