Bất phương trình chứa dấu căn - toán 10 công thức

Đầu chương trình đại số học kì 2 lớp 10, các bạn học sinh được tìm hiểu chương bất đẳng thức và bất phương trình. Tuy nhiên, việc giải bất phương trình đang là bài toán khiến nhiều bạn học sinh cảm thấy khó khăn vì ngoài các bất phương trình bất nhất, bậc hai thì còn xuất hiện nhiều bất phương trình chứa căn thức, chứa trị tuyệt đối. Hiểu được điều đó, Kiến Guru đã biên soạn các công thức giải bất phương trình lớp 10 để các em có thể vận dụng vào việc giải các bất phương trình từ đơn giản đến phức tạp một cách dễ dàng.

Đang xem: Công thức bất phương trình chứa căn lớp 10

Giải bất phương trình là một kĩ năng vô cùng quan trọng trong chương trình toán THPT vì lên lớp 11, 12 chúng ta còn sẽ gặp rất nhiều dạng toán mà muốn giải được thì cần có các kĩ năng giải bất phương trình. Hy vọng với các công thức giải bất phương trình mà Kiến Guru giới thiệu sẽ giúp các em giải quyết nhanh gọn tất cả các bài toán giải bất phương trình.

I. Các công thức giải bất phương trình lớp 10:

A/ Bất phương trình quy về bậc nhất:

Trong phần A, chúng tôi sẽ giới thiệu các công thức giải bất phương trình lớp 10 dành cho các phương trình bậc nhất. Trước khi đi vào các công thức giải các em cần phải nắm vững bảng xét dấu của nhị thức bậc nhất.

Bất phương trình chứa dấu căn - toán 10 công thức

1. Giải và biện luận bpt dạng ax + b

Bất phương trình chứa dấu căn - toán 10 công thức

1.1. Hệ bất phương trình bậc nhất một ẩn

Muốn giải hệ bất phương trình bậc nhất một ẩn ta giải từng bất phương trình của hệ rồi lấy giao các tập nghiệm thu được.

1.2. Dấu nhị thức bậc nhất

Bất phương trình chứa dấu căn - toán 10 công thức

2. Bất phương trình tích

∙ Dạng: P(x).Q(x) > 0 (1) (trong đó P(x), Q(x) là những nhị thức bậc nhất.)

∙ Cách giải: Lập bxd của P(x).Q(x). Từ đó suy ra tập nghiệm của (1).

3. Bất phương trình chứa ẩn ở mẫu

Bất phương trình chứa dấu căn - toán 10 công thức

Chú ý: Không nên qui đồng và khử mẫu.

4. Bất phương trình chứa ẩn trong dấu GTTĐ

∙ Tương tự như giải pt chứa ẩn trong dấu GTTĐ, ta hay sử dụng định nghĩa và tính chất của GTTĐ để khử dấu GTTĐ.

Dạng 1:

Bất phương trình chứa dấu căn - toán 10 công thức

Bất phương trình chứa dấu căn - toán 10 công thức

B/ Bất phương trình quy về bậc hai:

Trong phần B, chúng tôi sẽ giới thiệu các công thức giải bất phương trình lớp 10 dành cho các phương trình bậc hai và phương trình qui về bậc hai. Trước khi đi vào các công thức giải các em cần phải nắm vững bảng xét dấu của nhị thức bậc nhất.

Xem thêm: Công Thức Tính Cường Độ Dòng Điện Cực Đại, Công Thức Tính Cường Độ Dòng Điện

1. Dấu của tam thức bậc hai

Bất phương trình chứa dấu căn - toán 10 công thức

Nhận xét:

Bất phương trình chứa dấu căn - toán 10 công thức

2. Bất phương trình bậc hai một ẩn ax2 + bx + c > 0 (hoặc ≥ 0;

Để giải BPT bậc hai ta áp dụng định lí về dấu của tam thức bậc hai.

3. Phương trình – Bất phương trình chứa ẩn trong dấu GTTĐ

Để giải phương trình, bất phương trình chứa ẩn trong dấu GTTĐ, ta thường sử dụng định nghĩa hoặc tính chất của GTTĐ để khử dấu GTTĐ.

Bất phương trình chứa dấu căn - toán 10 công thức

Bất phương trình chứa dấu căn - toán 10 công thức

4. Phương trình – Bất phương trình chứa ẩn trong dấu căn

Trong các dạng toán thì bất phương trình chứa căn được xem là dạng toán khó nhất. Để giải phương trình, bất phương trình chứa ẩn trong dấu căn ta cầ sử dụng kết hợp các công thức giải bất phương trình lớp 10 kết hợp với phép nâng luỹ thừa hoặc đặt ẩn phụ để khử dấu căn.

Bất phương trình chứa dấu căn - toán 10 công thức

Bất phương trình chứa dấu căn - toán 10 công thức

Bất phương trình chứa dấu căn - toán 10 công thức

II. Bài tập giải bất phương trình lớp 10

Trong phần 2, chúng tôi xin giới thiệu các dạng bài tập vận dụng các công thức giải bất phương trình lớp 10. Các bài tập cũng được chia ra : bpt bậc nhất, bậc hai và các phương trình chứa dấu GTTĐ và chứa ẩn dưới dấu căn.

1. Bài tập về Bất Phương Trình:

Bài 1/ BPT bậc nhất

1.1. Giải các bất phương trình sau:

Bất phương trình chứa dấu căn - toán 10 công thức

1.2. Giải các bất phương trình sau:

Bất phương trình chứa dấu căn - toán 10 công thức

1.3.

Xem thêm: Vua Nguyên Tố Lưu Huỳnh Là Bao Nhiêu? Bài 30: Lưu Huỳnh

Giải các bất phương trình sau:

Bất phương trình chứa dấu căn - toán 10 công thức

Bài 2/ BPT qui về bậc nhất

Giải các bất phương trình sau:

Bất phương trình chứa dấu căn - toán 10 công thức

Bài 3/ BPT bậc hai

Bất phương trình chứa dấu căn - toán 10 công thức

Bài 4/ BPT qui về bậc hai có chứa dấu GTTĐ

Giải các bất phương trình sau:

Bất phương trình chứa dấu căn - toán 10 công thức

Bài 5/ BPT qui về bậc hai có chứa căn thức

Giải các phương trình sau:

Bất phương trình chứa dấu căn - toán 10 công thức

2. Bài tập về Phương Trình

Bài 1: Giải các phương trình sau: (nâng luỹ thừa)

Bất phương trình chứa dấu căn - toán 10 công thức

Bài 2. Giải các phương trình sau: (biến đổi biểu thức dưới căn)

Bất phương trình chứa dấu căn - toán 10 công thức
Bất phương trình chứa dấu căn - toán 10 công thức

Bài 4: Giải các phương trình sau: (nâng luỹ thừa)

Bất phương trình chứa dấu căn - toán 10 công thức

Bài 5: Giải các phương trình sau:

Bất phương trình chứa dấu căn - toán 10 công thức

Bất phương trình chứa dấu căn - toán 10 công thức

3. Bài tập tổng hợp các dạng:

Bất phương trình chứa dấu căn - toán 10 công thức

Bất phương trình chứa dấu căn - toán 10 công thức

Trên đây là các công thức giải bất phương trình lớp 10 và kèm theo là các dạng bài tập giải bất phương trình lớp 10. Để làm tốt dạng toán giải bất phương trình, trước hết các em học sinh cần phải nắm vững các quy tắc xét dấu của tam thức bậc nhất và tam thức bậc hai. Sau đó, dựa vào các công thức mà tài liệu đã giới thiệu, các em có thể áp dụng để giải các bất phương trình phức tạp hơn. Giải bất phương trình là một dạng toán rất quan trọng và theo suốt chúng ta trong chương trình toán THPT. Do đó, nó luôn xuất hiện trong các bài kiểm tra một tiết và đề thi học kì lớp 10 nên các em cần đặc biệt lưu ý trong quá trình ôn tập. Hy vong, với các công thức mà Kiến Guru giới thiệu, các bạn học sinh lớp 10 sẽ thành thạo việc giải bất phương trình và đạt điểm cao trong các bài kiểm tra sắp tới.

Xem thêm bài viết thuộc chuyên mục: Công thức

Bất phương trình chứa dấu căn - toán 10 công thức

Các dạng phương trình chứa căn bậc hai, bất phương trình chứa căn thức bậc hai luôn là một dạng toán xuất hiện nhiều trong các kì thi học kì, thi tuyển sinh vào lớp 10, thi THPTQG.

Để giải được phương trình, bất phương trình chứa căn, các em học sinh cần nắm vững kiến thức sau:

1. Nguyên tắc chung để giải phương trình, bất phương trình chứa căn bậc 2

Nguyên tắc chung để khử dấu căn thức là bình phương 2 vế của một phương trình, bất phương trình. Tuy nhiên, để đảm bảo việc bình phương này cho chúng ta một phương trình, bất phương trình mới tương đương thì cần phải có điều kiện cả 2 vế pt, bpt đều không âm.

Do đó, về bản chất, chúng ta lần lượt kiểm tra 2 trường hợp âm, và không âm của các biểu thức (thường là 1 vế của phương trình, bất phương trình đã cho).

Nếu bài viết hữu ích, bạn có thể  tặng tôi 1 cốc cafe vào số tài khoản Agribank 3205215033513.  Xin cảm ơn!

2. Các dạng phương trình chứa căn, bất phương trình chứa căn cơ bản

Có khoảng 4 dạng phương trình chứa căn, bất phương trình chứa căn cơ bản đó là

Bất phương trình chứa dấu căn - toán 10 công thức

3. Cách giải phương trình chứa căn, cách giải bất phương trình chứa căn

Chi tiết về phương pháp giải các dạng phương trình, bất phương trình chứa căn, xin mời thầy cô và các em học sinh theo dõi trong video sau đây.

4. Một số ví dụ về phương trình và bất phương trình chứa căn thức

Ví dụ 1. Giải phương trình

$$\sqrt {4 + 2x – {x^2}} = x – 2$$

Hướng dẫn. Phương trình đã cho tương đương với

\[\begin{array}{l} \,\,\,\,\,\,\,\left\{ \begin{array}{l} x – 2 \ge 0\\ 4 + 2x – {x^2} = {(x – 2)^2} \end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l} x \ge 2\\ {x^2} – 3x = 0 \end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l} x \ge 2\\ x = 0\, \vee \,x = 3 \end{array} \right. \\ \Leftrightarrow x = 3

\end{array}\] Vậy phương trình đã cho có nghiệm duy nhất $x = 3$.

Ví dụ 2. Giải phương trình

\[\sqrt {25 – {x^2}} = x – 1\]

Hướng dẫn. Phương trình đã cho tương đương với

\[\begin{array}{l} \,\,\,\,\,\,\,\left\{ \begin{array}{l} x – 1 \ge 0\\ 25 – {x^2} = {(x – 1)^2} \end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l} x \ge 1\\ 2{x^2} – 2x – 24 = 0 \end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l} x \ge 1\\ x = 4\, \vee \,x = – 3 \end{array} \right. \\ \Leftrightarrow x = 4

\end{array}\] Vậy phương trình có nghiệm duy nhất $x=4$.

Ví dụ 3. Giải phương trình \[\sqrt {3{x^2} – 9x + 1} + 2 = x\]

Hướng dẫn. Phương trình đã cho tương đương với

\[\begin{array}{l} \,\,\,\,\,\,\,\,\sqrt {3{x^2} – 9x + 1} = x – 2\\ \, \Leftrightarrow \left\{ \begin{array}{l} x – 2 \ge 0\\ 3{x^2} – 9x + 1 = {(x – 2)^2} \end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l} x \ge 2\\ 2{x^2} – 5x – 3 = 0 \end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l} x \ge 2\\ x = 3 \vee \,x = – \frac{1}{2} \end{array} \right. \\ \Leftrightarrow x = 3

\end{array}\] Vậy phương trình đã cho có nghiệm duy nhất $x = 3$.

Ví dụ 4. Giải phương trình $$\sqrt {{x^2} – 3x + 2} = x – 1$$

Hướng dẫn. Phương trình đã cho tương đương với $$\begin{array}{l} \,\,\,\,\,\,\,\left\{ \begin{array}{l} x – 1 \ge 0\\ {x^2} – 3x + 2 = {\left( {x – 1} \right)^2} \end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l} x \ge 1\\ x = 1 \end{array} \right. \\ \Leftrightarrow x = 1

\end{array}$$ Vậy phương trình đã cho có nghiệm duy nhất $x = 1$.

Ví dụ 5. Giải phương trình $$\sqrt {{x^2} – 5x + 4} = \sqrt { – 2{x^2} – 3x + 12} $$

Hướng dẫn. Phương trình đã cho tương đương với $$\begin{array}{l} \,\,\,\,\,\,\,\left\{ \begin{array}{l} {x^2} – 5x + 4 \ge 0\\ {x^2} – 5x + 4 = – 2{x^2} – 3x + 12 \end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l} \left( {x – 1} \right)\left( {x – 4} \right) \ge 0\\ 3{x^2} – 2x – 8 = 0 \end{array} \right. & \\ \Leftrightarrow \left\{ \begin{array}{l} \left[ \begin{array}{l} x \le 1\\ x \ge 4 \end{array} \right.\\ \left[ \begin{array}{l} x = 2\\ x = \frac{{ – 8}}{6} \end{array} \right. \end{array} \right. \Leftrightarrow x = \frac{{ – 8}}{6}

\end{array}$$ Vậy phương trình đã cho có nghiệm duy nhất $x = \frac{-8}{6}$.

Ví dụ 6. Giải bất phương trình $$x + 1 \ge \sqrt {2\left( {{x^2} – 1} \right)} $$

Hướng dẫn. Bất phương trình đã cho tương đương với $$\begin{array}{l} \,\,\,\,\,\,\,\left\{ \begin{array}{l} x + 1 \ge 0\\ {\left( {x + 1} \right)^2} \ge 2\left( {{x^2} – 1} \right) \ge 0 \end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l} x \ge – 1\\ {x^2} – 2x – 3 \le 0\\ {x^2} – 1 \ge 0 \end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l} x \ge – 1\\ – 1 \le x \le 3\\ \left[ \begin{array}{l} x \le – 1\\ x \ge 1 \end{array} \right. \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} x = – 1\\ 1 \le x \le 3 \end{array} \right.

\end{array}$$

Vậy tập nghiệm của bất phương trình là $S = \left[ {1;3} \right] \cup \left\{ { – 1} \right\}$.

Ví dụ 7. Giải bất phương trình $$2x – 5 < \sqrt { – {x^2} + 4x – 3} $$

Hướng dẫn. Phương trình đã cho tương đương với $$\left[ \begin{array}{l} \left\{ \begin{array}{l} 2x – 5 < 0\\ – {x^2} + 4x – 3 \ge 0 \end{array} \right. &  \left( 1 \right)\\ \left\{ \begin{array}{l} 2x – 5 \ge 0\\ {\left( {2x – 5} \right)^2} < – {x^2} + 4x – 3 \end{array} \right. & \left( 2 \right)

\end{array} \right.$$

  • Hệ bất phương trình (1) tương đương với $$\left\{ \begin{array}{l} x < \frac{5}{2}\\ 1 \le x \le 3

    \end{array} \right. \Leftrightarrow 1 \le x < \frac{5}{2}$$

  • Hệ bất phương trình (2) tương đương với $$\begin{array}{l} \,\,\,\,\,\,\,\left\{ \begin{array}{l} x \ge \frac{5}{2}\\ 5{x^2} – 24x + 28 < 0 \end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l} x \ge \frac{5}{2}\\ 2 < x < \frac{{14}}{5} \end{array} \right. \Leftrightarrow \frac{5}{2} \le x < \frac{{14}}{4}

    \end{array}$$

Lấy hợp tập nghiệm của 2 trường hợp trên, được đáp số cuối cùng là $S = \left[ {1;\frac{{14}}{5}} \right)$.

Ví dụ 8. Giải phương trình $$\sqrt {x + 4} – \sqrt {1 – x} = \sqrt {1 – 2x} $$

Hướng dẫn. Phương trình đã cho tương đương với

$$\begin{array}{l} \,\,\,\,\,\,\,\sqrt {x + 4} = \sqrt {1 – 2x} + \sqrt {1 – x} \\ \Leftrightarrow \left\{ \begin{array}{l} – 4 \le x \le \frac{1}{2}\\ x + 4 = 1 – x + 2\sqrt {(1 – x)(1 – 2x)} + 1 – 2x \end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l} – 4 \le x \le \frac{1}{2}\\ \sqrt {(1 – x)(1 – 2x)} = 2x + 1 \end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l} – 4 \le x \le \frac{1}{2}\\ x \ge – \frac{1}{2}\\ (1 – x)(1 – 2x) = 4{x^2} + 4x + 1 \end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l} – \frac{1}{2} \le x \le \frac{1}{2}\\ x = 0 \vee x = – \frac{7}{2} \end{array} \right. \Leftrightarrow x = 0

\end{array}$$ Vậy phương trình đã cho có nghiệm duy nhất $x = 0$.

Ví dụ 9. Giải phương trình $$\sqrt {3x + 1} – \sqrt {2x – 1} = \sqrt {6 – x} $$

Hướng dẫn. Điều kiện $\left\{ \begin{align}  & 3x+1\ge 0 \\ & 2x-1\ge 0 \\ & 6-x\ge 0 \\ \end{align} \right.\Leftrightarrow \left\{ \frac{1}{2}\le x\le 6 \right.$

Với điều kiện đó, phương trình đã cho tương đương với $$\begin{array}{l} \,\,\,\,\,\,\,\sqrt {3x + 1} – \sqrt {2x – 1} = \sqrt {6 – x} \\ \Leftrightarrow \,\,\,\sqrt {3x + 1} = \sqrt {6 – x} + \sqrt {2x – 1} \\ \Leftrightarrow \,\,\,3x + 1 = 6 – x + 2x – 1 + 2\sqrt {6 – x} \sqrt {2x – 1} \\ \Leftrightarrow \,\,\,2x – 4 = 2\sqrt {6 – x} \sqrt {2x – 1} \\ \Leftrightarrow \,\,x – 2 = \sqrt {6 – x} \sqrt {2x – 1} \\ \Leftrightarrow \,\,{x^2} – 4x + 4 = – 2{x^2} + 13x – 6\,\,\,(x \ge 2)\\ \Leftrightarrow \,\,3{x^2} – 17x + 10 = 0\\ \Leftrightarrow \left[ \begin{array}{l} x = 5\\ x = \frac{2}{3}\left( l \right) \end{array} \right.

\end{array}.$$ Vậy phương trình đã cho có nghiệm $x=5$.

Ví dụ 10. Giải bất phương trình $$2\sqrt{x-3}-\frac{1}{2}\sqrt{9-2x}\ge \frac{3}{2}$$

Hướng dẫn. Điều kiện $\left\{ \begin{align}  & x-3\ge 0 \\ & 9-2x\le 0 \\ \end{align} \right.\Leftrightarrow 3\le x\le \frac{9}{2}$

Với điều kiện trên, bất phương trình đã cho tương đương với \[\begin{array}{l} \,\,\,\,\,\,\,2\sqrt {x – 3} \ge \frac{1}{2}\sqrt {9 – 2x} + \frac{3}{2}\\ \Leftrightarrow 4\left( {x – 3} \right) \ge \frac{1}{4}\left( {9 – 2x} \right) + \frac{9}{4} + \frac{3}{2}\sqrt {9 – 2x} \\ \Leftrightarrow 16x – 48 \ge 18 – 2x + 6\sqrt {9 – 2x} \\ \Leftrightarrow 9x – 33 \ge 3\sqrt {9 – 2x} \\ \Leftrightarrow \left\{ \begin{array}{l} 18x – 64 \ge 0\\ {\left( {9x – 33} \right)^2} \ge 9\left( {9 – 2x} \right) \end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l} x \ge \frac{{32}}{9}\\ 81{x^2} – 576x + 1008 \ge 0 \end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l} x \ge \frac{{32}}{9}\\ \left[ \begin{array}{l} x \le \frac{{28}}{9}\\ x \ge 4 \end{array} \right. \end{array} \right. \Leftrightarrow x \ge 4

\end{array}\]

Kết hợp với điều kiện ta có tập nghiệm của bất phương trình là $S=\left[ 4;\,\frac{9}{2} \right]$.

Xem các ví dụ khác nữa tại đây: Phương pháp biến đổi tương đương giải phương trình chứa căn