Giải bài tập toán 9 sbt tập 2 bài 7.2 năm 2024

  1. Chứng minh \(\widehat {LBH},\widehat {LIH},\widehat {KIH}\) và \(\widehat {KCH}\) là 4 góc bằng nhau.
  1. Chứng minh KB là tia phân giác của \(\widehat {LKI}\).

Giải

Giải bài tập toán 9 sbt tập 2 bài 7.2 năm 2024

Vì ∆ABC là tam giác nhọn nên ba đường cao cắt nhau tại điểm H nằm trong tam giác ABC.

  1. Tứ giác AKHL có \(\widehat {AKH} + \widehat {ALH} = 90^\circ + 90^\circ = 180^\circ \)

Tứ giác AKHL nội tiếp.

Tứ giác BIHL có \(\widehat {BIH} + \widehat {BLH} = 90^\circ + 90^\circ = 180^\circ \)

Tứ giác BIHL nội tiếp.

Tứ giác CIHK có \(\widehat {CIH} + \widehat {CKH} = 90^\circ + 90^\circ = 180^\circ \)

Tứ giác CIHK nội tiếp.

Tứ giác ABIK có \(\widehat {AKB} = 90^\circ;\widehat {AIB} = 90^\circ \)

K và I nhìn đoạn AB dưới một góc vuông nên tứ giác ABIK nội tiếp. Tứ giác BCKL có \(\widehat {BKC} = 90^\circ;\widehat {BLC} = 90^\circ \)

K và L nhìn đoạn BC dưới một góc vuông nên tứ giác BCKL nội tiếp.

Tứ giác ACIL có \(\widehat {AIC} = 90^\circ;\widehat {ALC} = 90^\circ \)

I và L nhìn đoạn AC dưới một góc vuông nên tứ giác ACIL nội tiếp.

  1. Tứ giác BIHL nội tiếp.

\( \Rightarrow \widehat {LBH} = \widehat {LIH}\) (2 góc nội tiếp cùng chắn cung nhỏ \(\overparen{LH}\)) (1)

Tứ giác CIHK nội tiếp.

\( \Rightarrow \widehat {HIK} = \widehat {HCK}\) (2 góc nội tiếp cùng chắn cung nhỏ \(\overparen{HK}\)) (2)

Tứ giác BCKL nội tiếp.

\( \Rightarrow \widehat {LBK} = \widehat {LCK}\) (2 góc nội tiếp cùng chắn cung nhỏ \(\overparen{LK}\)) hay \(\widehat {LBH} = \widehat {HCK}\) (3)

Từ (1), (2) và (3) suy ra: \(\widehat {LKH} = \widehat {HKI}\). Vậy KB là tia phân giác của \(\widehat {LKI}.\)

Câu 7.2 trang 107 Sách Bài Tập (SBT) Toán 9 Tập 2

Cho đường tròn tâm O bán kính R và hai dây AB, CD bất kì. Gọi M là điểm chính giữa của cung nhỏ AB. Gọi E và F tương ứng là giao điểm của MC, MD với dây AB. Gọi I và J tương ứng là giao điểm của DE, CF với đường tròn (O). Chứng minh IJ song song với AB.

Giải

Giải bài tập toán 9 sbt tập 2 bài 7.2 năm 2024

M là điểm chính giữa của cung nhỏ \(\overparen{AB}\).

\(\overparen{MA}\) = \(\overparen{MB}\)

\(\widehat {AEC} = {1 \over 2}\) (sđ\(\overparen{AC}\) +sđ \(\overparen{MB}\)) (góc có đỉnh ở trong đường tròn)

\(\widehat {CDM} = {1 \over 2}\) sđ\(\overparen{MAC}\) (tính chất góc nội tiếp) hay \(\widehat {CDF} = {1 \over 2}\) sđ\(\overparen{MA}\) + sđ\(\overparen{AC}\)

Suy ra: \(\widehat {AEC} = \widehat {CDF}\)

\(\widehat {AEC} + \widehat {{\rm{CEF}}} = 180^\circ \) (hai góc kề bù)

Suy ra: \(\widehat {CDF} + \widehat {{\rm{CEF}}} = 180^\circ \) nên tứ giác CDFE nội tiếp

\( \Rightarrow \widehat {CDE} = \widehat {CFE}\) (2 góc nội tiếp cùng chắn cung nhỏ \(\overparen{CE}\)) hay \(\widehat {CDI} = \widehat {CFE}\)

Cho đường tròn tâm \(O\) bán kính \(R\) và hai dây \(AB,\) \(CD\) bất kì. Gọi \(M\) là điểm chính giữa của cung nhỏ \(AB.\) Gọi \(E\) và \(F\) tương ứng là giao điểm của \(MC,\) \(MD\) với dây \(AB.\) Gọi \(I\) và \(J\) tương ứng là giao điểm của \(DE,\) \(CF\) với đường tròn \((O).\) Chứng minh \(IJ\) song song với \(AB.\)

Phương pháp giải - Xem chi tiết

Ta sử dụng kiến thức:

+) Nếu một tứ giác có tổng số đo hai góc đối nhau bằng \(180^\circ\) thì tứ giác đó nội tiếp được đường tròn.

+) Số đo của góc có đỉnh ở bên trong đường tròn bằng nửa tổng số đo hai cung bị chắn.

+) Trong một đường tròn, số đo góc nội tiếp bằng nửa số đo của cung bị chắn.

+) Nếu \(C\) là một điểm trên cung \(AB\) thì: \(sđ \overparen{AB}=sđ \overparen{AC}+sđ \overparen{CB}.\)

+) Trong một đường tròn, các góc nội tiếp cùng chắn một cung thì bằng nhau.

Lời giải chi tiết

Xét đường tròn \((O)\) có \(M\) là điểm chính giữa của cung nhỏ \(\overparen{AB}\).

Suy ra \(\overparen{MA}\) = \(\overparen{MB}\)

Lại có: \(\widehat {AEC} = \displaystyle {1 \over 2} (sđ\overparen{AC} +sđ \overparen{MB}\)) (góc có đỉnh ở trong đường tròn)

\(\widehat {CDM} = \displaystyle {1 \over 2} sđ\overparen{MAC}\) (tính chất góc nội tiếp) hay \(\widehat {CDF} = \displaystyle {1 \over 2} (sđ\overparen{MA} + sđ\overparen{AC})\)\(=\displaystyle {1 \over 2} (sđ\overparen{AC} +sđ \overparen{MB})\)

Suy ra: \(\widehat {AEC} = \widehat {CDF}\)

Ta có: \(\widehat {AEC} + \widehat {{\rm{CEF}}} = 180^\circ \) (hai góc kề bù)

Suy ra: \(\widehat {CDF} + \widehat {{\rm{CEF}}} = 180^\circ \) nên tứ giác \(CDFE\) nội tiếp

\( \Rightarrow \widehat {CDE} = \widehat {CFE}\) (\(2\) góc nội tiếp cùng chắn cung nhỏ \(\overparen{CE}\)) hay \(\widehat {CDI} = \widehat {CFE}\)