Video hướng dẫn giải - bài 7 trang 107 sgk đại số và giải tích 11

\(\begin{array}{l}\,\,\,\,{u_{n + 1}} - {u_n}\\= \left( {n + 1 + \frac{1}{{n + 1}}} \right) - \left( {n + \frac{1}{n}} \right)\\= n + 1 + \frac{1}{{n + 1}} - n - \frac{1}{n}\\= 1 + \frac{1}{{n + 1}} - \frac{1}{n}\\= \frac{{{n^2} + n + n - n - 1}}{{n\left( {n + 1} \right)}} = \frac{{{n^2} + n - 1}}{{n\left( {n + 1} \right)}} > 0\,\,\forall n \in {N^*}\end{array}\)

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn
  • LG a
  • Lg b
  • LG c

Xét tính tăng, giảm và bị chặn của các dãy số \((u_n)\), biết:

LG a

\({u_n} = n + {1 \over n}\)

Phương pháp giải:

*) Xét hiệu\({u_{n + 1}} - {u_n}\).

Nếu hiệu trên dương thì dãy số là dãy số tăng.

Nếu hiệu trên âm thì dãy số là dãy số giảm.

Nếu hiệu trên bằng 0 thì dãy số là dãy không đổi.

*) Dãy số\(\left( {{u_n}} \right)\) được gọi là bị chặn trên nếu tồn tại một số \(M\) sao cho\({u_n} \le M\,\,\forall n \in {N^*}\).

Dãy số\(\left( {{u_n}} \right)\) được gọi là bị chặn dưới nếu tồn tại một số \(m\) sao cho\({u_n} \ge m\,\,\forall n \in {N^*}\).

Dãy số\(\left( {{u_n}} \right)\) được gọi là bị chặn nếu nó vừa bị chặn trên vừa bị chặn dưới, tức là tồn tại các số \(M,m\) sao cho\(m \le {u_n} \le M\,\,\forall n \in {N^*}\).

Lời giải chi tiết:

Xét hiệu:

\(\begin{array}{l}
\,\,\,\,{u_{n + 1}} - {u_n}\\
= \left( {n + 1 + \frac{1}{{n + 1}}} \right) - \left( {n + \frac{1}{n}} \right)\\
= n + 1 + \frac{1}{{n + 1}} - n - \frac{1}{n}\\
= 1 + \frac{1}{{n + 1}} - \frac{1}{n}\\
= \frac{{{n^2} + n + n - n - 1}}{{n\left( {n + 1} \right)}} = \frac{{{n^2} + n - 1}}{{n\left( {n + 1} \right)}} > 0\,\,\forall n \in {N^*}
\end{array}\)

Do \(n^2+n-1 \ge 1^2+1-1=1>0\) và n(n+1) > 0 với \(\forall n\in N^*\)

Suy ra: \(u_n\) là dãy số tăng.

Mặt khác: \({u_n} = n + {1 \over n} \ge 2\sqrt {n.{1 \over n}} = 2,\forall n \in {N^*}\) \(\Rightarrow u_n\) là dãy số bị chặn dưới.

Khi \(n\) càng lớn thì \(u_n\) càng lớn nên \(u_n\) là dãy số không bị chặn trên.

Vậy \(u_n\) là dãy số tăng và bị chặn dưới.

Lg b

\({u_n} = {( - 1)^{n-1}}\sin {1 \over n}\)

Lời giải chi tiết:

Ta có:

\(u_1= (-1)^{1-1}\sin 1 = \sin 1 > 0\)

\(\eqalign{& {u_2} = {\left( { - 1} \right)^{2-1}}.\sin {1 \over 2} = - \sin {1 \over 2} < 0 \cr & {u_3} = {( - 1)^{3-1}}.\sin {1 \over 3} = \sin {1 \over 3} > 0 \cr} \)

\( \Rightarrow u_1 > u_2\) và\(u_2< u_3\)

Vậy \(u_n\) là dãy số không tăng không giảm.

Ta lại có: \(\left| {{u_n}} \right| = \left| {{{\left( { - 1} \right)}^{n - 1}}\sin \frac{1}{n}} \right| = \left| {\sin \frac{1}{n}} \right| \le 1 \)\(\Leftrightarrow - 1 \le {u_n} \le 1\)

Vậy \(u_n\) là dãy số bị chặn.

Cách khác:

Với \(n \ge 1\) thì \(0 < \frac{1}{n} < 1 < \frac{\pi }{2} \Rightarrow \sin \frac{1}{n} > 0,\forall n\)

Suy ra: Với \(n\) chẵn\( \Rightarrow {\rm{ }}n-1\) lẻ

\( \Rightarrow {\rm{ }}{\left( { - 1} \right)^{n-1}}\; = - 1{\rm{ }} \Rightarrow {\rm{ }}{u_n}\; < 0\)

Với \(n\) lẻ \( \Rightarrow {\rm{ }}n-1\)chẵn

\[\begin{array}{*{20}{l}}
{ \Rightarrow {{\left( { - 1} \right)}^{n - - 1}}\; = 1 \Rightarrow {u_n}\; > 0.}\\
{ \Rightarrow {u_1}\; > {u_2}\; < {u_3}\; > {u_4}\; < {u_5}\; > {u_{6\;}} \ldots }
\end{array}\]

\( \Rightarrow {\rm{ }}({u_n})\)không tăng không giảm.

\( \Rightarrow \;{\left( { - 1} \right)^{n{\rm{ }}-{\rm{ }}1}}\; = {\rm{ }} - 1\; \Rightarrow \;{u_n}\; < {\rm{ }}0\)

LG c

\({u_n} = \sqrt {n + 1} - \sqrt n \)

Lời giải chi tiết:

Ta có:

\({u_n} = \sqrt {n + 1} - \sqrt n \) \( = \frac{{\left( {\sqrt {n + 1} - \sqrt n } \right)\left( {\sqrt {n + 1} + \sqrt n } \right)}}{{\sqrt {n + 1} + \sqrt n }} \)\(= {{n + 1 - n} \over {\sqrt {n + 1} + \sqrt n }} \) \(= {1 \over {\sqrt {n + 1} + \sqrt n }}\)

Xét hiệu:

\(\eqalign{
& {u_{n + 1}} - {u_n} \cr&= {1 \over {\sqrt {(n + 1) + 1} + \sqrt {n + 1} }} - {1 \over {\sqrt {n + 1} + \sqrt n }} \cr
& = {1 \over {\sqrt {n + 2} + \sqrt {n + 1} }} - {1 \over {\sqrt {n + 1} + \sqrt n }} \cr} \)

Ta có:

\(\left\{ \matrix{
\sqrt {n + 2} > \sqrt {n + 1} \hfill \cr
\sqrt {n + 1} > \sqrt n \hfill \cr} \right. \)

\(\Rightarrow \sqrt {n + 2} + \sqrt {n + 1} > \sqrt {n + 1} + \sqrt n > 0\)

\(\Rightarrow {1 \over {\sqrt {n + 2} + \sqrt {n + 1} }} < {1 \over {\sqrt {n + 1} + \sqrt n }} \)

\(\Rightarrow {u_{n + 1}} - {u_n} < 0\)

\(\Rightarrow {u_n}\)là dãy số giảm.

Mặt khác: \({u_n} = {1 \over {\sqrt {n + 1} + \sqrt n }} > 0,\forall n \in N^*\) \(\Rightarrow {u_n}\)là dãy số bị chặn dưới.

Ta lại có: với\(n \ge 1\)thì \(\sqrt {n + 1} + \sqrt n \ge \sqrt 2 + 1\)

\(\Rightarrow {u_n} = {1 \over {\sqrt {n + 1} + \sqrt n }} \le {1 \over {\sqrt 2 + 1}}\)

Suy ra: \(u_n\)là dãy số bị chặn trên.

Vậy \(u_n\) là dãy số giảm và bị chặn.