How does one species of finch give rise to two distinct species?

February 2010, updated July 2018

How does one species of finch give rise to two distinct species?
The Central European blackcap (left) and Galapagos ground finch (right) are two bird species that have undergone speciation recently, while scientists observed. Blackcap photo Erik Jorgensen flickr under CC BY-NC-SA 2.0. Ground finch photo from Kookr flickr under CC BY-NC 2.0.

We often think of speciation as a slow process. All the available evidence supports the idea that different species evolved from common ancestors, and yet, new species don’t pop up around us on a daily basis. For many biologists, this implies that speciation happens so slowly that it’s hard to observe on human timescales — that we’d need to track a population for millennia or more to actually see it split into two separate species. However, new research suggests that speciation may be easier to observe than we thought. We just need to know where to look.

Where's the evolution?

For organisms that reproduce sexually, speciation begins when parts of a population evolve differences from one another. Eventually, the two parts of the population may evolve so many differences that they can no longer interbreed. This can happen in many different ways — through shifts in mate availability, mate choice, or simply the organisms’ ability to mate successfully with one another. Now, two groups of researchers have shown exactly how these mating differences, the first steps in speciation, can evolve in bird populations in less than 50 years.

How does one species of finch give rise to two distinct species?
This map shows the two different blackcap migration routes. After Rolshausen, G., Segelbacher, G., Hobson, K. A., and Schaefer, H. M. (2009). Contemporary evolution of reproductive divergence in sympatry along a migratory divide. Current Biology. 19:2097-2101.

The Central European blackcap

The Central European blackcap spends its summers in Germany and Austria and, until the 1960s, had spent its winters in balmy Spain. About 50 years ago, however, backyard bird feeding became popular in Britain. With a ready supply of food waiting for them in Britain, blackcaps that happened to carry genes that caused them to migrate northwest, instead of southwest to Spain, were able to survive and return to their summer breeding grounds in central Europe. Over time, the proportion of the population carrying northwest-migrating genes has increased. Today, about 10% of the population winters in Britain instead of Spain.This change in migration pattern has led to a shift in mate availability. The northwest route is shorter than the southwest route, so the northwest-migrating birds get back to Germany sooner each summer. Since blackcaps choose a mate for the season when they arrive at the breeding grounds, the birds tend to mate with others that follow the same migration route.

In December of 2009, researchers from Germany and Canada confirmed that these migration and mating shifts have led to subtle differences between the two parts of the population. The splinter group has evolved rounder wings and narrower, longer beaks than their southward-flying brethren. The researchers hypothesize that both of these traits evolved via natural selection. Pointier wings are favored in birds that must travel longer distances, and rounder wings, which increase maneuverability, are favored when distance is less of an issue — as it is for the northwest migrators. Changes in beak size may be related to the food available to each sub-population: fruit for birds wintering in Spain and seeds and suet from garden feeders for birds wintering in Britain. The northwest migrators’ narrower, longer beaks may allow them to better take advantage of all the different sorts of foods they wind up eating in the course of a year. These differences have evolved in just 30 generations and could signify the beginning of a speciation event.

Galapagos finches

The Galapagos finches have been intensely studied by biologists Peter and Rosemary Grant since 1973. At that time, the Galapagos island Daphne Major was occupied by two finch species: the medium ground finch and the cactus finch. Then, in 1981, a hybrid finch arrived on Daphne Major from a neighboring island. It was part ground finch, part cactus finch, and quite large compared to the locals. It also happened to have an extra-wide beak and an unusual song — a mash-up of the songs sung by ground finches in its birthplace and on Daphne Major. The immigrant paired up with a local female ground finch (who also happened to carry some cactus finch genes), and the Grants followed these birds’ descendents for the next 28 years.

How does one species of finch give rise to two distinct species?
The new immigrant finch (left), a cactus finch (middle), and a ground finch (right). Cactus finch photo from Kookr flickr under CC BY-NC 2.0. Immigrant finch and Daphne Major ground finch photos from Grant, P. R., and Grant, B. R. (2009). The secondary contact phase of allopatric speciation in Darwin’s finches. Proceedings of the National Academy of Sciences. 106(48): 20141-20148.

After four generations, the island experienced a severe drought, which killed many of the finches. The two surviving descendents of the immigrant finch mated with each other, and this appears to have set the stage for speciation. In December of 2009, the Grants announced that, since the drought, the new lineage has been isolated from the local finches: the children and grandchildren of the survivors have only produced offspring with one another.

Several factors probably contributed to the isolation of the new lineage. Since males mainly learn their songs as juveniles in the nest, the immigrant’s male descendents also sang his strange, mixed song. This likely affected which females were willing to mate with them. In addition, female finches tend to choose mates with beak sizes similar to their own, so the extra-wide beaks of the new lineage probably also biased it towards within-group mating.

Both the blackcaps and the finches demonstrate the important role that behavioral shifts may play in the early stages of speciation, as well as the many ways these shifts can arise. For example, the blackcaps’ split was triggered by a persistent, human-caused change in the environment, while the finches’ split was kicked off by a fluke series of natural events. The behavioral shifts that result in reproductive isolation also differ between the two cases. The change in the blackcaps’ migration pattern is genetically controlled, while the finches’ unusual song, which contributed to their divergence, is a learned trait.

These two examples make it clear that the division between species is not a black-and-white issue. Rather, speciation occurs as many different sorts of traits (physical, behavioral, and genetic) diverge from one another along a continuum. Because of this, biologists sometimes disagree about where to draw the line between incipient species — about when a division has become deep enough to warrant a new species name. Whatever we choose to call them, these two cases clearly illustrate how a lineage can split and begin to make its way down two separate evolutionary paths.

Of course, there’s no way to know if these paths will converge at some point in the future or are even completely distinct now. Another chance event on Daphne Major could cause the new finch lineage to begin interbreeding with the local population again. And blackcaps may never evolve differences beyond a slight change in wing and beak shape. While we can’t know the fates of these lineages, directly observing such divergences in real time highlights the fact that we don’t always need to look into the distant past or far off future to find examples of speciation in action. Evolution is occurring all around us. We just need to learn where and how to look for it.

News update, July 2018

Back in 2010, we reported on a speciation event that was observed in real time on the Galapagos islands: in 1981 an immigrant finch arrived on the island of Daphne Major and began breeding there with a local female (a medium ground finch, Geospiza fortis) under the watchful eye of biologists. That pairing wound up establishing a new lineage of finches that bred only within itself and didn’t mix with the native species. Since 2010, scientists have continued to follow this lineage of birds, which meets all the main criteria for being its own species, and apply new research tools to it. This past year, researchers announced the results of full genome sequencing of the major players in this speciation event — and the discovery that the mysterious male was not who they’d originally assumed him to be. Based on his appearance, biologists at first thought he was a hybrid of the medium ground finch and the small cactus finch from a neighboring island. But his genome revealed him to be a large cactus finch (G. conirostris) from an island more than 100km away. Despite his rather distant relation to his mate on Daphne Major, their offspring were successful. Within three generations, they were completely reproductively isolated from the local birds. Over time, the lineage lost genetic variation through genetic drift (which has a particularly large impact on small populations), but continued to thrive. Will this trend continue and will the birds remain their own species? Biologists will be standing by to find out!

  • Read more about it
  • Discussion questions
  • Related lessons & resources
  • References

Primary literature:

  • Grant, P. R., and Grant, B. R. (2009). The secondary contact phase of allopatric speciation in Darwin's finches. Proceedings of the National Academy of Sciences. 106(48): 20141-20148. Read it »
  • Rolshausen, G., Segelbacher, G., Hobson, K. A., and Schaefer, H. M. (2009). Contemporary evolution of reproductive divergence in sympatry along a migratory divide. Current Biology. 19:2097-2101. Read it »

News articles:

  • A summary of the blackcap research from Science News
  • A summary of the finch research from Wired

Understanding Evolution resources:

  • A tutorial on the process of speciation
  • A news story on speciation in cichlid fish
  • A review of the process of natural selection

  1. What evidence suggests that the Central European blackcap lineage is beginning to split?
  2. What evidence suggests that the immigrant finch lineage may be on its way to forming a new species?
  3. Review the process of natural selection. Use the four steps described on that page to explain how the blackcaps migrating to Britain might have evolved rounder wings.
  4. Read about the biological species concept and three other species concepts. For each concept, explain whether you think the two parts of the blackcap population constitute separate species by that definition. Explain your reasoning and/or what other information you would need to make this determination.
  5. Read about the biological species concept and three other species concepts. For each concept, explain whether you think the immigrant finch’s lineage and the Daphne Major ground finches constitute separate species by that definition. Explain your reasoning and/or what other information you would need to make this determination.

  • Teach about divergence and speciation: In this version of the bird beak activity for grades 6-12, students learn about how variation, habitat differences, and natural selection, can lead to adaptation and divergence.
  • Teach about speciation and biogeography: In this activity for grades 6-12, students "take a trip" to the Greater Antilles to figure out how the Anolis lizards on the islands might have evolved.
  • Teach about finch evolution: This news brief, for grades 9-12, celebrates Darwin's bicentennial by examining what we've learned about the evolution of the Galapagos finches since Darwin's time.

How to use Evo in the News with students.

  • Grant, P. R., and Grant, B. R. (2009). The secondary contact phase of allopatric speciation in Darwin's finches. Proceedings of the National Academy of Sciences. 106(48): 20141-20148.
  • Huber, S. K., De León, L. F., Hendry, A. P., Bermingham, E., and Podos, J. (2007). Proceedings of the Royal Society B. 274: 1709-1714.
  • Lamichhaney, S., Han, F., Webster, M. T., Andersson, L., Grant, B. R., and Grant, P. R. (2017). Rapid hybrid speciation in Darwin’s finches. Science. DOI: 10.1126/science.aao4593
  • Milius, S. (2010). Some birds prefer northern winter. Science News. 177(1): 12.
  • Rolshausen, G., Segelbacher, G., Hobson, K. A., and Schaefer, H. M. (2009). Contemporary evolution of reproductive divergence in sympatry along a migratory divide. Current Biology. 19:2097-2101.
  • Wagner, C. E. (2018). Improbable Big Birds. Science. 359: 157-159.

How did finches become different species?

(Geospiza magnirostris) into three other species of finches found on the Galapagos Islands. Due to the absence of other species of birds, the finches adapted to new niches. The finches' beaks and bodies changed allowing them to eat certain types of foods such as nuts, fruits, and insects.

How a single finch species evolved into different Galapagos finch species?

It is thought that their ancestor, and closest known relative, is the dull-coloured grassquit, which is found on mainland South America. Once the original grassquits arrived at Galapagos, they diversified and adapted to the different environments found on the Islands, eventually becoming different species.

How did finch with different beaks become distinct species?

On the Galápagos, finches evolved based on different food sources — long, pointed beaks served well for snatching insects while broad, blunt beaks work best for cracking seeds and nuts.

How did one ancestral finch population give rise to 13 species?

As different populations of finches occupied these niches, they evolved adaptations that enabled them to survive in the different habitats. Thus, in a relatively short period of time, many different species of finches evolved from a single ancestral population, a process called adaptive radiation.